[拼音]:Xi婔erbote fang婔an
[外文]:Hilbert s program
D.希尔伯特在20世纪20年代提出的用以证明数学的协调性的一个特定的方案。数学中在使用反证法时需要肯定数学的协调性;后来在发展非欧几何的过程中,需要证明非欧几何的协调性以便断定平行公设的独立性,即断定它不能由几何中别的公理推出,但非欧几何只是数学的一个部门而且是新发展的部门,即使它的协调性受到怀疑,仍无碍于整个古典数学的协调性。等到人们依次地把非欧几何的协调性化归于欧几里得几何的协调性,再化归于实数论、自然数论,之后化归于 论的协调性,而同时又发现素朴 论有矛盾、不协调以后,数学的协调性问题就成为一个重大问题了。严格公理 论虽然可以排除已被发现的悖论,但还不能保证数学理论里不再出现逻辑矛盾。要想彻底解决数学的协调性问题,用化归方法是不够的,因为这只能得到相对的协调性,而 论的协调性不能再化归于其他理论。同时希尔伯特认为在物理世界里也找不到 论里各种超穷 的模型,因此,只有从事直接协调性证明才能得出真正的协调性。于是,他便提出其有名的方案。
希尔伯特方案首先要求把数学完全形式化,列出基本概念、公理以及基本推理规则,而且必须列举详尽无遗,使得数学中一切概念都可以从基本概念定义出来,各概念一切性质也都可以从公理与基本推理规则推出,因而不必再借助于任何直觉、任何图形。这样一来,基本概念可以是任何满足公理与基本推理规则的东西,从而可以把它们看作变元,进而把它们看作表示这些变元的符号,公理不外是由一些符号所组成的符号系列,基本推理规则不外是一些对这些符号系列加以变换的变形规则。如果在一理论中能够推出两个互相否定(互相矛盾)的符号系列来,这理论便叫做不协调的。这样,只要能够证明从作为数学公理的那些符号系列出发,并根据作为数学的基本推理规则的变形规则加以改变,而且无论如何也变换不出表示互相矛盾的两个命题的符号系列,那末数学的协调就可以被证明。
希尔伯特方案回答了当自然数以及逻辑概念都在探讨考察之列、它们的协调性都有待审查时,能用什么去探讨、研究的问题。它认为,符号系列是具体的有限的东西,由推理规则所反映的变换是对具体的符号进行的变换,所以也是具体的有限的动作,是只对具体的有限的东西所进行的具体的有限的动作。这样便可以限于有穷主义,而有穷主义的结果是随时可以被验证的,因此其结果的协调性是无容置疑的。希尔伯特方案中的有穷主义论证与数学中一般推理过程的较大不同,在于对待全称量词“所有的x”以及存在量词“有的x”的论证上。凬xA(x) 指“所有的x均使得A(x)成立”,但一般说来,“所有的x”并不能都拿来一一验证,看它是不是使A(x)成立。到底根据什么断定凬xA(x)为真”?办法是,取一个变元x,它既不被假定有任何性质,也不被假定有任何特殊结构,只是一般的x。如果对于这个变元x而证明了A(x),那末就可以断定凬xA(x)。不过有穷主义对通常的论证,如对“找不出使A(x)成假的x,所以凬xA(x)”这类用反证法立论的论证是不承认的。有穷主义也不承认这样一种论证,“反设每个x都使得A(x)为假,(推导下去)将导致矛盾,故不可能每个 x都非A(x),于是至少有一个x使A(x)为真”。因为在有穷主义看来,“从凬xA(x)可导致矛盾”这个事实,并没有给出具体的使为真的x,也没有给出寻找这个x的方法。根据有穷主义的要求证明ヨxA(x),是给出一个使得A(x)成立的x。如果这个x很难马上给出,至少也要给出一个寻找这个x的办法。如果真的能够用有穷主义的论证证明形式化的数学是协调的,那末形式化数学的协调性便得以建立。因为有穷主义论证本身的协调性应该是没有疑问的,所以数学协调性的直接证明也可以说没有疑问的。
希尔伯特方案提出后不久,德国数学家W.阿克曼于1924年证明,如对数学归纳法稍作限制则自然数论是协调的。但K.哥德尔1931年却证明,只用可以表示于内容相当丰富的数学系统S之内的理论,绝不能证明系统S的协调性。而希尔伯特方案要求的有穷主义论证是可以表述于自然数论之内的。这就表明,纯粹使用有穷主义论证决不能证明自然数论的协调性,更不能证明整个数学的协调性。于是,希尔伯特方案最终宣告破产。后来的研究逐渐把有穷主义的要求放宽,继续探讨各理论系统的协调性以及和证明有关的各种性质,从而形成了证明论。
严正声明:本文由历史百科网注册或游客用户任滢臻自行上传发布关于» 希尔伯特方案的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:任滢臻;本文链接:https://www.freedefine.cn/wenzhan/79917.html