[拼音]:kongqi dongli ganrao
[外文]:aerodynamic interaction
如果在同一流场中存在两个或多个物体,它们的扰动影响会使作用于某一物体上的空气动力与这一物体单独存在时的值不同。例如,风洞洞壁对风洞中试验模型的干扰,飞机起飞和降落时地面对飞机的干扰(见地面效应)等。空气动力干扰不仅发生在上述相互分开而又有一定距离的几个物体之间,更多的是出现在几个物体相互连接在一起的情况。例如,飞机就是由机翼、机身、尾翼和推进装置等部件组成的。由于各部件绕流的压力场和边界层的相互干扰的结果,使作用在整架飞机上的空气动力并不简单地等于各孤立部件所产生空气动力之和,必须计及因空气动力干扰而产生的增量。
对于尾翼位于机翼后方的飞行器,空气动力干扰主要包括机翼与机身之间、机翼与尾翼之间和发动机喷流对机身的干扰。
机翼(尾翼)与机身之间的相互干扰机身使外露机翼处的迎角增大,从而使外露机翼的升力增高。另一方面,外露机翼上下表面的压强差传送到机身上,也使机身产生升力增量。对于无限长圆柱形机身与小展弦比(见机翼空气动力特性)机翼的组合体,理论表明在机翼安装角为零时,机翼-机身组合体的升力比由左右两半外露翼所组成单独机翼的升力大。空气动力干扰也往往使机翼(尾翼)机身组合体的阻力比单独机翼(尾翼)和单独机身阻力之和为大,其增量称干扰阻力。在亚音速时,主要是由于在机翼和机身连接处的边界层相互干扰而增厚甚至分离,导致型阻力(见空气动力特性)增大。当机翼和机身的交接界面的夹角小于90°时,型阻力增量严重,这时必须对翼身连接处采取整流措施或使用填角块。在跨音速和超音速时,除了干扰型阻力外,由于机翼和机身的激波相互干扰,还会产生干扰波阻力。如果设计得当,这种干扰波阻力可能是负的,即起拉力的作用。
机翼与尾翼的相互干扰机翼的涡系在尾翼处产生诱导下洗场,从而减小尾翼剖面的局部迎角,使作用在尾翼上的空气动力发生变化。尾翼涡系处于机翼后方,对机翼的影响很小,在超音速时由于信号不能逆流传递,尾翼对机翼没有任何干扰。
发动机喷流对机身后部的干扰从机身底部喷口喷出的发动机喷流对机身后部(收缩形的后部也称“船尾”)有两种干扰效应:一是引射效应,二是体积效应。在高速喷流的引射作用下,机身船尾处的压强下降,阻力增加,这是不利的。如果喷口处的喷流静压超过其临界值(见喷管),则喷口后的喷流会自由膨胀,体积猛增,引起绕流向外偏转,船尾处的压强增大,结果使阻力减小。在超音速气流中,绕流的向外偏转伴随着产生激波,激波后的高压会通过边界层前传到船尾表面,同样使阻力减小。
除这些空气动力干扰外,还有安装在机翼上的发动机短舱,悬挂在机翼或机身下面的副油箱、 等外挂物之间及其与挂架、机翼或机身的相互干扰等。空气动力干扰是不可避免的,在飞行器设计过程中往往要采取各种措施使空气动力干扰变为有利的因素。例如,利用跨音速和超音速面积律来降低跨音速和超音速飞行器的零升波阻力。
参考书目
道诺文和劳伦斯编,安继光译:《高速飞机部件空气动力学》上册,国防工业出版社,北京,1963。(A. F.Donovan & H. R.Lawrence, Aerodynamic Components of Aircraft at High Speeds, Oxford Univ.Press,London,1957.)
严正声明:本文由历史百科网注册或游客用户英喆自行上传发布关于» 空气动力干扰的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:英喆;本文链接:https://www.freedefine.cn/wenzhan/64903.html