[拼音]:juxing jisuanji
[外文]:supercomputer
在一定时期内速度最快、性能较高、体积较大、耗资最多的计算机系统。巨型计算机是一个相对的概念,一个时期内的巨型机到下一时期可能成为一般的计算机;一个时期内的巨型机技术到下一时期可能成为一般的计算机技术。现代的巨型计算机用于核物理研究、核武器设计、航天航空飞行器设计、国民经济的预测和决策、能源开发、中长期天气预报、卫星图像处理、情报分析和各种科学研究方面,是强有力的模拟和计算工具,对国民经济和国防建设具有特别重要的价值。
据统计,计算机的性能与使用价值的平方成正比,即所谓平方律。按照这一统计规律,计算机性能越高,相对价格越便宜。因此,随着大型科学工程对计算机性能要求的日益提高,超高性能的巨型计算机将获得越来越大的经济效益。
发展概况50年代中期的巨型机有 UNIVAC公司的LARC机和 IBM公司的 Stretch机。这两台计算机分别采用了指令先行控制、多个运算单元、存储交叉访问、多道程序和分时系统等并行处理技术。60年代的巨型机有CDC6600机和7600机,它们都配置有多台外围处理机,主机的中央处理器含有多个独立并行的处理单元。70年代出现了现代巨型计算机,其指令执行速度每秒已达5000万次以上,或每秒可获得2000万个以上的浮点结果。
现代巨型机经历了三个发展阶段。第一阶段有美国ILLIAC-Ⅳ(1973年)、STAR-100(1974年)和ASC(1972年)等巨型机。ILLIAC-Ⅳ机是一台采用64个处理单元在统一控制下进行处理的阵列机,后两台都是采用向量流水处理的向量计算机。1976年研制成功的CRAY-1机标志着现代巨型机进入第二阶段。这台计算机设有向量、标量、地址等通用寄存器,有12个运算流水部件,指令控制和数据存取也都流水线化;机器主频达80兆赫,每秒可获得8000万个浮点结果;主存储器容量为100~400万字(每字64位),外存储器容量达109~1011字;主机柜呈圆柱形,功耗达数百千瓦;采用氟里昂冷却。图中为这种机器的逻辑结构。我国的“银河“亿次级巨型计算机(1983年)也是多通用寄存器、全流水线化的巨型机。运算流水部件有18个,采用双向量阵列结构,主存储器容量为200~400万字(每字64位),并配有磁盘海量存储器。这些巨型机的系统结构都属于单指令流多数据流(SIMD)结构。80年代以来,采用多处理机(多指令流多数据流MIMD)结构、多向量阵列结构等技术的第三阶段的更高性能巨型机相继问世。例如,美国的CRAY-XMP、CDCCYBER205,日本的S810/10和20、VP/100和200、S×1和S×2等巨型机,均采用超高速门阵列芯片烧结到多层陶瓷片上的微组装工艺,主频高达50~160兆赫以上,较高速度有的可达每秒5~10亿个浮点结果,主存储器容量为400~3200万字(每字64位),外存储器容量达1012字以上。
还有一类专用性很强的巨型机。例如,美国哥德伊尔宇航公司的巨型并行处理机MPP,由16384个处理器组成128×128的方阵,专用于卫星图像信息的高速处理,8位整数加的处理速度可达每秒60亿次,32位浮点加可达每秒1.6亿次。英国ICL公司研制的分布式阵列处理机专用系统DAP,由 4096个一位微处理器和一台大型系列机2900组成,较高速度可达每秒1亿个64位的浮点结果。
巨型机技术并行处理是巨型机技术的基础。为提高系统性能,现代巨型机都在系统结构、硬件、软件、工艺和电路等方面采取各种支持并行处理的技术。
数据类型为便于高速并行处理,中央处理器的数据类型除传统的各类标量外,都增加了向量或数组类型。向量或数组运算的实质,是相继或同时执行一批同样的运算,而标量运算只处理一个或一对操作数,故向量运算速度一般比标量运算速度快得多。
硬件结构现代巨型机硬件大多采用流水线、多功能部件、阵列结构或多处理机等各种技术。流水线是把整个部件分成若干段,使众多数据能重叠地在各段操作,特别适于向量运算,性能-价格比高,应用普遍。多功能部件可以同时进行不同的运算,每个部件内部又常采用流水线技术,既适合向量运算又适合标量运算。我国的“银河”机和日本的 VP/200、S810/20机进一步将每个向量流水部件或向量处理机加倍,组成双向量阵列,又把向量运算速度提高了两倍。美国CYBER-205机的向量处理机可按用户需要组成一、二或四条阵列式的流水线,技术上又有所发展。多处理机系统以多台处理机并行工作来提高系统的处理能力,各台处理机可以协作完成一个作业,也可以独立完成各自的作业。每台处理机内部也可采用各种适宜的并行处理技术。在任务的划分与分配、多处理机之间的同步与通信和互连网络的效益等方面,多处理机系统尚存在不少问题有待解决。现代巨型机采用的主要还是双处理机系统(如CRAY-XMP)和四处理机系统(如HEP)。
向量寄存器为降低存储流量和频带宽度的要求,并解决短向量运算速度低的问题,第二阶段的巨型机采取了向量寄存器技术。CRAY-1机设有8个向量寄存器,所有向量运算指令都面向向量寄存器和其他通用寄存器。为更有力地支持各运算流水部件高度并行地进行各自的向量运算,日本的VP/100和S810等第三阶段的巨型机设有庞大的向量寄存器,总容量达64K字节。
标量运算标量运算速度对巨型机系统综合速度的影响极大。为此,除增设标量寄存器、标量后援寄存器或标量高速缓冲存储器以及采用先进的标量控制技术(如先行控制等)外,还可采用专作标量运算的功能部件和标量处理机等技术。例如,CRAY-1机的多功能部件中,有6个专作标量和地址运算,3个兼作标量浮点运算,标量运算速度可达每秒2000万次以上;CYBER205机专设标量处理机,含5个运算部件,标量运算速度可达每秒5000万次以上。在提高向量运算速度的同时,进一步提高标量运算速度,尽可能缩小两者的差距,已成为改善巨型机系统性能的重要研究课题。
主存储器为使复杂系统的三维处理成为可能,要求主存储器能容纳庞大的数据量。80年代的巨型机容量已达256兆字节。为与运算部件的速度相匹配,主存储器必须大大提高信息流量。为此,主要的措施是:
(1)采取较成熟的多模块交叉访问技术,模块数量一般取2n,有的巨型机采用素数模新技术,以尽量避免向量访问的冲突;
(2)不断减小每个模块的存取周期,如CRAY-XMP机的存取周期为38纳秒,S810机虽用静态MOS存储器,也只有40纳秒,与双极存储相当;
(3)增加主存储器的访问端口,如CRAY-XMP机的每台处理机与CRAY-1机相比,访问端口由一个增加到四个,解决了存储访问的瓶颈问题。
输入输出通道巨型机不但配有数量较多的输入输出通道,如16~32个,而且具有较高的通道传输率。如CRAY-XMP机除一般通道外,还有两个传输率为每秒100兆字节的通道和一个传输率高达每秒1250兆字节的通道。
固态海量存储器为适应特大算题的大量数据在主存储器和外存储器之间的频繁调度,新型的巨型机采用固态海量存储器作为超高速外存储器。CRAY-XMP机的固态存储器采用MOS技术,容量为64~256兆字节,传输率比磁盘快50~100倍。S810机的固态存储器容量为256~1024兆字节,传输率达每秒1000兆字节。
大规模集成电路巨型机的逻辑电路都采用超高速ECL电路,门级延迟约为0.25~0.5纳秒,芯片门数为几十至一千以上;1984年日本已研制成功4K门阵列常温砷化镓芯片,级延迟约为50皮秒;用于向量寄存器的超高速双极随机存取存储器的访问时间为3.5~5.5纳秒。
组装工艺缩短机内走线长度和提高机器主频,是提高巨型机速度的基础。现代巨型机主频有的已达 250兆赫以上。为此,除提高芯片的集成度和速度外,还采用微组装等高密度多层组装工艺。由此而来的散热问题很突出,需要采取特殊的冷却措施。
并行算法和软件技术为充分发挥巨型机的系统性能,必须研究各种并行算法并研制并行化的软件系统。针对特大型科学计算的特点,巨型机通常配置如下软件:具有多重处理能力的批处理分布式操作系统、高效的汇编语言、向量FORTRAN或PASCAL、ADA语言和向量识别器、并行化标准子程序库、科学子程序库和应用程序库、系统实用程序、诊断程序等。
参考书目
D.J.Kuck, The Structure of Computers and Computations,John Wiley & Sons.,New York,1978.
F. Sumner, Supercomputer Systems Technology,Series 10,No.6,Pergamon Infotech Limited,England,1982.
Kai Hwang and Faye A.Briggsr, Computer Architecture and Parallel Processing,McGraw-Hill Inc.,New York,1984.
严正声明:本文由历史百科网注册或游客用户光明自行上传发布关于» 巨型计算机的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:光明;本文链接:https://www.freedefine.cn/wenzhan/58793.html