历史百科网

金属热处理加热方法

[拼音]:jinshu rechuli jiare fangfa

[外文]:heating method for metal heat treatment

加热是金属热处理主要工序之一。选用合理的加热方法可以保证和提高金属热处理的质量(见金属热处理质量控制)。有些零件在热处理后出现的缺陷就是由于加热方法不当造成的。加热时,应保持温度适当而均匀以避免或减少金属表面氧化、脱碳:同时还应控制加热速度。这些都与恰当地选择加热方法有关。早期的加热是以木炭或煤为燃料,在敞开的灶式炉中进行的。后来改变燃烧室的位置,制成不同形式的反射炉,提高了加热效率。为了改变因火焰直接接触工件而引起的表面氧化脱碳,一些中、小型工件常采用间接加热方法,如将工件埋在熔融盐液等介质中加热,即“浴炉”加热,可以基本上避免氧化,减少脱碳。液体和气体燃料的采用,电加热的扩大应用,使金属热处理的加热方法更趋完善,加热温度更易于控制,同时避免了环境污染。在第一次世界大战前后出现专门制造热处理加热炉的企业。30年代初期,可控气氛光亮加热法和机械化连续热处理设备的出现,使热处理的加热方法又前进一步。60年代以后真空热处理的问世,可控气氛的扩大应用,新热源的移植,氧探头和微处理机的应用等,使热处理加热方法有了更新的发展。

按热源的不同,金属热处理加热方法大致可分为燃料燃烧加热法、电加热法和高能量密度能源加热法 3大类。

燃料燃烧加热法

所用燃料可以是固体(煤)、液体(油)和气体(煤气、天然气、液化石油气)。

燃煤加热

煤的资源丰富,燃煤反射炉在热处理加热方法中有过一定的地位。煤的性质和反射炉的结构,决定了煤不易完全燃烧,因而煤炉热效率低,加热质量和劳动条件差,煤烟污染环境。这些缺点,使得燃煤加热法逐渐被其他加热方法所取代。

液体燃料加热

主要使用重柴油作燃料,适用于大型加热炉加热,也用于外热式盐浴炉的加热,一般在炉子加热室外墙一侧或两侧安装喷嘴。液体燃料用于加热外热式盐浴炉时,喷嘴则安装在坩埚外的炉壳上。液体燃料在喷嘴中与空气混合,并在压缩空气的作用下雾化,然后喷出喷嘴,在加热室中(或在盐浴炉的坩埚外)燃烧,以加热工件(或坩埚)。喷嘴的合理设计与布置,对保持炉温均匀、节省燃料起着关键作用。喷嘴喷出的雾化油也可以在炉内的辐射管中燃烧,加热辐射管以间接加热工件。燃油比燃煤容易控制加热温度,适用于大件整体的加热和供油量充足的地区。

气体燃料加热

在喷嘴中,气体与一定比例的空气混合后喷出燃烧。这种方法可直接加热放在加热室中的工件,也可以把火焰喷入装在加热室中的辐射管,间接加热工件。用于盐浴炉时,喷嘴装在坩埚外的炉壳上,火焰射向坩埚外侧以加热熔盐。用于加热的气体燃料有煤气、天然气和液化石油气等。调节空气与气体的比值可以获得氧化或还原的燃烧气氛,从而减少工件加热时的氧化脱碳程度。这种加热方法适用于大件整体加热和燃气供应充足的地区。

另一种方式是用喷嘴的火焰直接加热工件表面,这时喷嘴和工件作相对移动,所用气体为氧-乙炔、氧-丙烷、氧-甲烷等。这种加热方法即火焰淬火,适用于工件的表面淬火。

电加热法

以电为热源,通过各种方法使电能转变为热能以加热工件。电加热时,温度易于控制,无环境污染,热效率高。电加热有多种方法。

电热元件加热

利用工频(50~60赫)交变电流通过电热元件时产生的电阻热加热工件。电热元件常布置在加热室内四周或两侧,以保证加热室内温度均匀;也有把元件装在辐射管内对工件间接加热的。对于外热盐浴炉或金属浴炉,则把电热元件布置在坩埚外、壳体内的空间。这种加热方法也可用于氧化铝粒子的浮动粒子炉。它适用于工件整体加热和电能充足的地区。

工件电阻加热

降压后的交变电流直接通过工件,由工件本身电阻产生热量使工件温度提高。这种方法适用于对截面均匀的工件进行整体加热。还有一种方式是利用滚动铜轮压在金属工件上,通以低电压大电流的交变电流,利用铜轮与工件间的接触电阻产生热量而加热工件表面。

工件感应加热

把工件放在一个螺旋线圈内,线圈中通以一定频率(一般高于工频)的交流电,使放在线圈中的工件产生涡流电流,利用工件本身的电阻产生热量而被加热。这种加热的深度可随电流频率提高而变浅,称为感应加热热处理。感应加热主要用于加热工件表面,但采用较低频率而工件直径又小时,也可以进行整体加热。这种加热方法效率高,耗电少,多用于中、小零件的加热淬火。

加热介质电阻加热

将工业频率的低压交变电流导入埋在介质中的电极,利用电流流过介质时产生的电阻热使介质本身达到高温。工件放在这种高温介质中进行加热,可以减少或避免氧化脱碳。这种介质都是导电体,如盐、石墨粒子等。加热炉的炉型有内热式盐浴炉和石墨浮动粒子炉。这种加热方法主要用于中、小零件的加热淬火。

高能量密度能源加热

以很大的功率密度加热工件表面,加热时间以毫秒计,功率密度可达106~108瓦/厘米2,采用的热源有太阳能、激光束和电子束等。

太阳能加热

以聚光式太阳能加热器加热工件。

激光束加热

利用 CO2 连续激光发生器产生的激光,经过聚焦产生高温射束照射工件,使工件局部表面薄层瞬时达到淬火温度或熔化温度。照射停止后,表面热量迅速传入基底材料而使表面淬硬或迅速凝固。利用激光束加热的工艺有相变硬化-淬硬、表面“上光”-快速凝固、表面合金化等。使反射镜可以改变光束的方向,所以这种方法最适用于内壁(如汽缸套)加热,但热效率较低。

电子束加热

利用高速运动的电子轰击工件表面,使很高的动能迅速转变为热能,将工件表面温度迅速提高到淬火温度或熔化温度。照射停止后,表面热量在瞬时间即可传入冷态的基底材料而淬硬或迅速凝固。与激光加热一样,电子束加热的工艺也有相变硬化、表面“上光”和表面合金化等。由于加热需要在真空室内进行,工件批量受到一定限制,但热效率较高。

参考书目

南京机器制造学校编:《热处理炉及车间设备》,机械工业出版社,北京,1984。

梁文林编:《感应加热装置》,机械工业出版社,北京,1982。

严正声明:本文由历史百科网注册或游客用户昌瀚自行上传发布关于» 金属热处理加热方法的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:昌瀚;本文链接:https://www.freedefine.cn/wenzhan/58735.html

赞 ()
我是一个广告位
留言与评论(共有 0 条评论)
   
验证码: