历史百科网

电磁场的保角变换

[拼音]:diancichang de baojabianhuan

[外文]:conformal mapping in electromagnetic field

数学上规定复平面z和复平面ω之间的变换ω=f(z)是导数f′(z)厵0的各点处是保角变换,它是求解二维电磁场问题的一种有力工具。例如两个平行的柱形电极,当长度远大于间距、从而可以忽略柱体的末端效应时,就可近似为二维问题。保角变换可应用于:静电、静磁问题,包括传输线(即横电磁场)问题;具有复杂边界的导波系统问题;以及电磁场的反演问题。

静电、静磁问题的应用甚广,在电源或磁源以外的区域,二维问题的电场强度或磁场强度等于某一静势函数的梯度,后者满足二维拉普拉斯方程,其解称为(圆)调和函数,记为u(x,y),则

设复变数z=x+jy,则根据已知的u(x,y),总可以找到另一个调和函数v=v(x,y),构成解析函数

ω(z)=u+jv

z=x+jy

称u和v为共轭函数,ω为复势函数。可以证明v也满足二维拉普拉斯方程并且在 z复平面上的等值线是两簇互相正交的曲线。若选其中的一簇为等势线,则另一簇就代表力线(电力线、磁力线),相应地称这两簇曲线所对应的函数为势函数和流函数(通量函数)。

若能找到两个共轭函数,其中一个函数的等值线恰好和所研究的电极边界重合,则另一个函数的等值线即代表由电极发出的电力线。因而,根据电力线的流函数就可以计算出电极表面所带的电荷量,从而可以计算场分布和电容量等。例如平板电容器二维边缘场的分析(图1a)。设两极板的电位分别为±1伏,间距为2(长度单位),置于z-平面中(z=x+jy),根据对称 ,只需分析上半平面(y>0)的场。利用解析函数

的保角变换(t=ξ+jη),使z-平面上由点l、m、n连成的多角形变换成以点l′、m′、n′连线为界的上半t-平面(图1b)。已知后者的复势函数为

故平板电容器的复势函数满足关系式

据此可得出在z-平面内的等势线(u=常数)和电力线(v=常数)的曲线方程。

某些边界形状较复杂的导波系统,经保角变换可变换成一个较易处理的简单边界形状。例如利用 H波导的电磁场解描述沟槽形波导(图2)的电磁场时就需要用保角变换。

在电磁场反演问题中,由已知远区场推算电磁场源的距离、方向和形状时,可采用保角变换,将已知二维闭合曲线的外域变换成单位圆的外域,并利用变换函数以及远区场两者的劳伦茨级数展开式的系数关系,可以得出解的低频估计。

在具体问题中,根据预给的势函数或流函数,去寻找合适的共轭函数并不容易。对于场域具有多角形边界的问题,施瓦茨变换是一种很有用的方法。它把一个复平面上由实轴和 大的圆弧所围成的上半平面变换到另一复平面上的多角形内域,或反之。对于除了平角和零角之外只含一、二个正角的多角形,施瓦茨变换是初等解析函数;当正角增加到三、四个,变换与椭圆积分及椭圆函数有关。椭圆函数属于双周期解析函数,常应用于分析带状线等特种截面传输线。

参考书目

林为干:《微波理论与技术》,科学出版社,北京,1979。

严正声明:本文由历史百科网注册或游客用户君轩自行上传发布关于» 电磁场的保角变换的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:君轩;本文链接:https://www.freedefine.cn/wenzhan/55370.html

赞 ()
我是一个广告位
留言与评论(共有 0 条评论)
   
验证码: