[拼音]:zazhi fenbu celiang jishu
[外文]:measurement of impurity profiling
半导体器件的许多电学特 ,包括结电容、串联电阻、击穿电压、穿通电压、电流增益、频率响应、开关速度等,都与形成器件的外延层、扩散层和离子注入层中的杂质分布有关。了解这些薄层中的杂质分布情况,无论对于设计高 能的器件,还是建立工艺过程的有效监控都具有重要意义。杂质分布测量有多种方法。
阳极氧化剥层与四探针测量法用被测硅片作阳极,铂片作阴极,均置于电解液中,加上电压后在硅片的表面就会生成一层阳极氧化层。根据此氧化层的颜 ,可粗略地控制其厚度为几百埃,再经椭圆仪准确测定为d1。然后,放入氢氟酸腐蚀液中除去氧化层,这样剥除的硅层厚度被折合为刅d1。刅为硅与它所生长二氧化硅的厚度比,通常约为0.43。在阳极氧化剥层前后,用四探针测量硅表面的薄层电阻,分别为Rs0和RS1。由此可得薄层电导的变化为1/Rs0-1/RS1=αd1(N1qμ)。式中q为电子电荷;μ为电子或空穴的迁移率,均为已知;N1为载流子浓度。在室温情况下杂质是充分电离的,也就是杂质浓度十分接近于N1。因此,可以把N1看成是阳极氧化所剥除的硅层内平均杂质浓度、也可视为距表面刅d1/2处的杂质浓度。经过这样连续的阳极氧化剥层与四探针测量,继续生长和剥除氧化层厚度 d2、d3、…、dn、…,测得薄层电阻Rs2、Rs3、…、Rsn、…,便可求得距表面各点的杂质浓度N2、N3、…、Nn、…。这样,可测出整个薄层中的杂质分布。
两探针测扩展电阻法用两个金属探针与半导体表面接触。若半圆状针尖的半径均为ɑ,则在探针上加电压时绝大部分电压将降落在两针尖附近1.5ɑ范围以内。在小信号(小于15毫伏)情况下,电压U与流过探针的电流I 不论在正、反方向都呈线 关系。U/I称为扩展电阻,用Rs表示。Rs与ɑ成反比,与接触处半导体材料的电阻率ρ成正比,即Rsρ/ɑ。对于一台固定的两探针装置(ɑ不变),首先用一套已知电阻率ρ和晶体取向的标准样片作Rs测量,并得出Rs~ρ 校准曲线。
用两探针测量薄层的杂质分布时,须把样品事先磨成一个0.5~2°的小角度倾斜面。然后,使两探针平行于原始表面,并沿新的倾斜表面顺次测出Rs,用Rs~ρ校准曲线确定ρ、再由ρ换算出杂质浓度N。根据斜面的倾斜度,可以算出测量点新对应的磨角前样品的深度。这样就得出杂质浓度N 随深度的分布。 用两探针扩展电阻法测量杂质分布的优点是测量掺杂浓度范围宽,空间分辨率高,不论是同型层或异型层均适用。
电容-电压法在PN结和金属-半导体接触的肖特基势垒中,改变外加反偏压即可改变空间电荷层的宽度,从而改变结电容。电容-电压关系与空间电荷层扩展处的杂质浓度有关。对于突变PN结和肖特基势垒,N可表示为
空间电荷层宽度与结电容的关系可表示为
W=εA/C
上式中的N 在突变PN结中为轻掺杂一侧空间电荷层边缘处的杂质浓度,在肖特基势垒中为空间电荷层向半导体内扩展的边缘处杂质浓度;q为电子电荷;ε为半导体材料的电容率;A为PN结或金属-半导体接触的面积;C为结电容;U为反向偏压;W 为空间电荷层宽度。测量杂质分布时,首先把所测的样片加工成台面PN结或肖特基势垒二极管,并准确测量其结面积A。测出在不同反偏压U时的电容C,给出1/C2~U曲线。空间电荷层扩展的边缘位置x,可表示为x=xj+W,在PN结中xj就是结深,在肖特基势垒中xj=0。根据这些情况,每选取一个反偏压U的数值就可以从1/C2~U曲线上求出d(1/C2)/du值。再由此计算出杂质浓度N 的数值,并由电容C计算出W 以及与杂质浓度N相对应的位置x。最后即得杂质浓度分布N~x。
用电容-电压法测量杂质分布,手续简便,能满足部分半导体器件 能分析的要求。但是,这种测量方法仅限于反映PN结轻掺杂一侧和肖特基势垒附近半导体中的杂质浓度,加之空间电荷层的扩展又要受到击穿电压的限制,因而所能测量的空间范围是很有限的。
离子探针分析用一束能量为 5~20千电子伏的针状离子束轰击样品,使被轰击层中的原子溅射离化成离子,然后通过质量分析器辨别二次离子的成分。对样品进行逐层剥蚀分析,即可测出杂质分布。此法还可同时测定两种杂质元素的分布,并以10~10克的 灵敏度和10-6~10-9 的相对灵敏度测定微量成分,以1微米的空间分辨率和 50~100埃的深度分辨本领给出从氢到铀所有元素在三维空间的分布,还能测定同位素。
放射线同位素法此法包括示踪原子法和中子活化法两种,利用放射 同位素由于核蜕变而发出的特征辐射进行定量检测,配合阳极氧化或化学去层就可测出杂质分布。它可测定0.001%~1%的相对杂质含量,以及10-4~10-8克的 含量。
(1)示踪原子法:把待研究杂质的放射 同位素作为杂质源按常规扩散工艺引入半导体中,然后逐层测量其放射 。放射 同位素要选择合适,半衰期长短适中,尽量采用具有β射线的同位素,因它易于防护且计数效率高。
(2)中子活化法:把已掺入杂质元素的半导体样品送到中子源前进行一定时间的辐照,然后取出进行逐层分析。常用的是把样品送到原子能反应堆中进行热中子辐照。
用四探针、两探针和电容-电压法所测的杂质浓度,都是经过测量电学参量换算得到的,实际上是半导体中已电离的那部分杂质浓度。而离子探针和放射 同位素法则是直接测得的全部杂质浓度,包括电离和未电离的两部分。这种方法不受同型层或异型层结构的限制,不仅能测半导体中的杂质浓度,而且能测二氧化硅等绝缘层中的杂质浓度。但由于这两种方法的测量手续繁杂,一般不用于常规测试。
严正声明:本文由历史百科网注册或游客用户于静琪自行上传发布关于» 杂质分布测量技术的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:于静琪;本文链接:https://www.freedefine.cn/wenzhan/54529.html