[拼音]:muhejin
[外文]:molybdenum alloys
以钼为基加入其他元素组成的合金。在难熔金属中,钼及其合金有良好的导热、导电 和低的膨胀系数(与电子管用的玻璃相近),在高温下(1100~1650℃)有高的强度,与钨相比,容易加工,因而在电子管(栅极和阳极)、电光源(支撑材料)、金属加工工具(压铸和挤压模具及穿孔顶头)制造部门以及航天工业中得到应用。钼能耐熔融玻璃的浸蚀,它的氧化物不会污染玻璃。自1943年以来,钼材一直用于玻璃工业作加热电极。Mo-30W合金具有优异的抗熔融锌腐蚀的 能,已成功地应用于炼锌工业。钼还用于制造硫酸生产中的热交换器和阀门等部件。
1910年已开始采用粉末冶金工艺生产钼制品。1945年以前粉末冶金工艺一直是制造钼的片材、丝材和棒材的 工业生产方法。40年代中期美国帕克(RParke)和哈姆 (J.L.Ham)研制成用自耗电弧熔炼工艺制取高 能的钼和钼合金锭的方法。40年代末到60年代中期,为了满足原子能、航空和航天技术的需要,对钼合金及有关工艺进行了广泛研究,研制出 Mo-0.5Ti-0.02C合金,Mo-0.5Ti-0.1Zr-0.02C(TZM)合金。60年代末至70年代初又制成强度更高的Mo-Hf-C系合金。我国在50年代末开始用粉末冶金坯料生产钼制品。以后用粉末冶金和熔炼两种坯料生产出钼及其合金的棒材、丝材、板材、箔材、管材和矩形管材。
合金系列工业生产的钼合金可分为Mo-Ti-Zr系、Mo-W系和Mo-Re系合金,还有以碳化铪质点沉淀强化的Mo-Hf-C系合金。TZM合金具有优异的综合 能,是应用最广泛的钼合金。TZC(Mo-1.25 Ti-0.15 Zr-0.15C)合金比TZM具有更高的高温强度和再结晶温度,但加工困难,应用受到限制,见表。
钼合金有低温脆 和焊接脆 以及高温氧化等缺点,所以发展受到限制。用合金化的方法难以改善钼合金的高温 能,目前只是用防护涂层改善这种 能。钼合金研究中的主要问题是提高高温强度和再结晶温度,改善材料低温塑 。纯钼材研究中的主要问题是改善低温塑 ,即降低它的塑 -脆 转变温度。
钼合金的主要强化途径是固溶强化、沉淀强化和加工硬化(见金属的强化)。钛、锆和铪是钼的主要合金元素。合金元素对钼的轧制棒材硬度的影响见下页图。钛、锆和铪不仅可以固溶强化和保持材料的低温塑 ,而且能形成稳定的、弥散分布的碳化物相,提高材料的强度和再结晶温度。
间隙杂质碳、氮特别是氧对塑 -脆 转变温度有严重的影响。它们在钼中的溶解度极低(室温下不大于1ppm),多余的间隙元素则以钼的化合物形式分布在晶界上,降低晶界强度,导致晶间脆 断裂。钼合金中加入微量硼能细化晶粒,净化晶界并改变晶界形态,从而提高钼的塑 :加入微量铁和钇等元素也可以改善低温塑 (见界面)。1955年吉奇(G.Geach)和休斯(J.Hughes)发现铼能明显改善钼和钨的塑 ,可使钼的塑 -脆 转变温度下降到-200℃。
塑 加工塑 加工不仅是钼合金的成形手段,而且还可以提高钼合金的强度?a href='baike/225/315630.html' target='_blank' style='color:#136ec2'>透纳扑牡 滤苄浴n饧捌浜辖鹂捎贸9嫠苄约庸し椒ㄉ宀摹⒋摹⒉摹⒐懿摹舨摹⑾卟暮?a href='baike/223/313498.html' target='_blank' style='color:#136ec2'>型材。钼合金材料加工的特点是每道热变形加工工序对产品最终 能都有明显的影响。钼在600℃以上迅速氧化,在725℃左右氧化产物挥发并出现液相,因此钼及其合金加热时通常采用氢或其他还原 气氛保护。由于钼的沾污层很薄,易用融熔碱洗去,所以热加工可在大气条件下进行,但以快速为宜。钼及其合金的冷加工应在塑 -脆 转变温度以上进行。
钼及其合金的锭坯主要用粉末冶金工艺生产,也可用熔炼工艺生产。一般小规格坯料多采用粉末冶金工艺,大规格坯料两者都可采用。采取何种工艺取决于对最终产品 能的要求。粉末冶金坯料的合适密度大约是理论密度的93~96%。工业上钼及其合金的熔炼主要采用真空自耗电弧熔炼和电子束熔炼。粗大晶粒的铸锭须经挤压开坯后才能进行加工。
挤压用于破碎粗大的铸态晶粒,改善铸锭的加工 能,也可以用来生产管材、棒材和型材。为使铸态晶粒充分破碎,挤压比应不小于4,挤压温度通常在1100~1315℃之间。如果是通过挤压直接获得产品和中间产品,应当采用更大的挤压比和更高的挤压温度。为延长模具寿命和保证制品尺寸及表面质量,应采用二氧化锆或三氧化二铝耐火材料涂层模具,挤压时用玻璃润滑剂润滑。
锻造包括旋锻和普通锻造。旋锻主要用于生产2.5毫米直径以上的细棒和拉拔丝材的坯料,所用坯料为10~30毫米方形烧结条。纯钼旋锻的开锻温度常在1400℃左右,道次变形量一般为10~20%,也可达30%左右。随着直径的减小,锻造温度逐渐降低,3毫米直径时可降到800℃左右。对普通锻造而言,锤锻比压锻更合宜。普通锻造可获得大尺寸坯料和大型锻件。纯钼的开锻温度约1400℃左右,而经挤压开坯的坯料的开锻温度可以低些。自由锻造要注意安全,防止工件或碎块飞出伤人。
轧制用于板材、带材、箔材和棒材生产。轧制熔炼-挤压提供的坯料的初轧温度一般在 1200~1250℃之间;粉末冶金提供的坯料的初轧温度一般在1400℃左右。为了减少不均匀变形,初轧时的道次变形量应在20~40%之间,每次加热后轧制总变形量为75%左右。当总变形量超过85%(板厚大约为6毫米)时,轧制温度可降到700~900℃;板厚在1~2毫米时,轧制温度可降到200~400℃。依据材质的塑 -脆 转变温度不同,过渡到冷轧的板材厚度为0.5~1毫米。可采用交叉轧制来改善产品的各向异 。为获得足够的加工硬化和改善低温塑 ,最终产品合适的冷加工量应为70%左右。
管材加工钼管材主要以铸锭或烧结锭为挤压管坯,采用温加工工艺,通过轧制、拉拔或旋压制成各种管材。我国采用温轧生产小直径钼管。初轧温度一般在 650℃左右,终轧温度大约350℃。温轧道次加工率一般在20~35%之间,很大可达40%以上。对于直径为8毫米、壁厚为0.5毫米的钼管而言,轧管可长达6500毫米。温轧钼管有很好的内外表面,良好的室温塑 ,并可进一步拔制成毛细管。直径较大的薄壁管一般用挤压或烧结管坯再经旋压加工而成。
热处理一般应用再结晶退火和消除应力退火。再结晶退火用于挤压、锻造和热轧过程。消除应力退火是为了消除加工硬化。 由于再结晶退火使材料的塑 -脆 转变温度升高,不利于下一步加工,一般加工产品是以消除应力退火状态交货和使用的。
严正声明:本文由历史百科网注册或游客用户鸿宝自行上传发布关于» 钼合金的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:鸿宝;本文链接:https://www.freedefine.cn/wenzhan/50802.html