[拼音]:youxian chongji xiangying shuzi lüboqi
[外文]:finite impulse response digital filter
对单位冲激的输入信号的响应为有限长序列的数字滤波器。它的主要特点是具有准确线 相位特 。有限冲激响应数字滤波器一般实现为非递归型结构,因此,又称为非递归型数字滤波器。非递归型滤波器具有 稳定的特 ,而且,运算有限字长所产生的输出噪声也较小。按所处理信号的类型可分为一维有限冲激响应数字滤波器和二维或多维有限冲激响应数字滤波器。
一维有限冲激响应数字滤波器又称一维非递归型数字滤波器,处理单变量信号序列。其输出y(n)可以直接由输入序列x(n)和单位冲激响应序列h(n)褶积而得
y(n)=n(k)x(n-k) (1)
式中N为数字滤波器单位冲激响应长度。 单位冲激响应h(n)的z变换H(z)为有限冲激响应数字滤波器的转移函数
H(z)=n(n)z (2)
一维有限冲激响应数字滤波器实现为非递归型结构(图1)。
有限冲激响应数字滤波器的设计,主要是使转移函数在单位圆上的值
H()=n(n)z (3)
逼近一个理想幅度响应Hd()。设计一维有限冲激响应数字滤波器常用的方法有:窗函数法、频率采样法和等波纹机助优化设计法。
窗函数法设计有限冲激响应数字滤波器最直接的方法就是把 冲激响应序列截短,得到有限长度的冲激响应。设所要求的理想频率响应为Hd(),其单位冲激响应Hd(n)为Hd()的傅里叶反变换。Hd(n)是非因果 长序列。为使得所设计的数字滤波器的有限冲激响应h(n)逼近hd(n),采用对hd(n)加窗的方法,即令
h(n)=hd(n)w(n) (4)
式中w(n)为有限长度窗序列。由褶积定理可求得所设计的滤波器的频率响应为
(5)
式中W()为窗序列w(n)的频谱函数。选取适当的窗序列可以得到对理想频率响应Hd()的较佳逼近。常用的窗序列有
矩形窗:
(6)
汉宁窗:
(7)
海明窗:
(8)
布莱克曼窗:
(9)
凯塞窗:
(10)
式中α为控制主瓣宽度和旁瓣电平的设计参数,
,
I(·)表示零阶贝塞尔函数。图2为上述五种窗函数的曲线。附表列出上述五种窗函数的 能参数。
除上述所列的五种窗函数外,尚有其他类型的窗函数。一般窗序列函数均可表示为闭函数形式,便于设计应用。
频率采样法频域逼近的一种设计方法。由于有限长度冲激响应序列可以由同样长度的频域抽样值 地确定,因此,对理想频率响应可以在频域取等间隔抽样插入逼近。利用过渡带抽样值设为待定变量的自由度,应用线 规划优化方法可以求得对理想频率响应的逼近。
等波纹机助优化设计法利用等波纹逼近方法,使逼近函数在整个频率域内与理想频率响应的误差为很小,然后用雷麦兹法求解。这种方法虽然计算较复杂,但主要是利用计算机辅助设计,设计效率较高、效果较好。线 相位有限冲激响应数字滤波器的缺点是时延较大,如果不要求线 相位特 ,可以设法将转移函数在单位圆外的零点反演到单位圆内,设计成具有较小时延的很小相位有限冲激响应数字滤波器。
二维有限冲激响应数字滤波器通称二维非递归型数字滤波器,用以处理二维数字信号序列。其输出可以由输入的二维信号序列x(m,n)与单位冲激响应序列h(m,n)进行二维离散褶积求得
(11)
式中N1和 N2分别为数字滤波器单位冲激响应的维长度。单位冲激响应h(m,n)的二维z变换H(z1,z2)为二维非递归型数字滤波器的转移函数
(12)
二维非递归型数字滤波器与一维非递归型数字滤波器有相似之处。设计方法主要有窗函数法、变换法和等波纹机助设计法等。窗函数法的二维窗序列wⅡ(m,n)可以由一维窗序列wI(k)导出
(13)
窗函数法设计简便,且不限于设计零相位数字滤波器。变换法是用变量代替法将一维零相位非递归型数字滤波器变换为二维非递归型数字滤波器。
这种设计方法比较复杂,且只限于设计零相位滤波器。等波纹机助设计法可以设计具有佳特 的非递归型数字滤波器。
参考书目
邹理和:《数字滤波器》,国防工业出版社,北京,1979。
A.Antoniou,Digital Filter:Analysis and Design,McGraw-Hill Co., New York,1979.
T.S.Huang,Two Dimensional Digital Signal Processing I,Springer Verlag, Berlin,1981
严正声明:本文由历史百科网注册或游客用户吉羽自行上传发布关于» 有限冲激响应数字滤波器的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:吉羽;本文链接:https://www.freedefine.cn/wenzhan/48204.html