历史百科网

相关函数

[拼音]:xiangguan hanshu

[外文]:correlation function

两个信号之间相似性的一种量度。信号可以是确定性的,也可以是随机性的。对于两个确定性的连续信号u(t)和y(t),如果它们在(-∞,+∞)上是平方可积的,则它们的互相关函数是

实际上经常会遇到u(t)和y(t)是由同一个信号源产生的两个信号的情况,例如地震勘探信号、雷达发射与接收的回波信号等。通过计算互相关函数可以比较和分辨它们的相似程度。如果u(t)和y(t)是同一信号,则称Ruu(τ)为信号u(t)的自相关函数。自相关函数主要有以下性质:

(1)|Ruu(τ)|≤Ruu(0);

(2);

(3)Ruu(τ)是τ的偶函数,即Ruu(-τ)=Ruu(τ);

(4)Ruu(τ)的形状与信号u(t)中的各种频率成分有关。互相关函数的性质与自相关函数有明显的不同:

(1)Ruy(0)不一定是Ruy(τ)的极大值;

(2)Ruy(τ)不是τ的偶函数;

(3)Ruy(τ)只与u(t)和y(t) 同的频率成分有关。如果信号是离散的无穷序列ut和yt,则互相关与自相关函数序列分别是

它们也分别具有上述的性质。如果函数u(t)和y(t)都是以T为周期的,或序列{ut}和{yt}都是以N为循环长度的,则它们的循环相关函数也是周期的或循环的,其计算可以简化为

这种循环相关函数仍然具有上述性质。

对于两个随机性的续信号连u(t)和y(t),它们的相关函数是由数学期望给出的:Ruy(τ)=E[u(t)y(t+τ)]和Ruu(τ)=E[u(t)u(t+τ)],其中E[·]代表对括号内的随机变量求数学期望。这时的相关函数仍然具有前述的几条性质。

有时,对于随机信号的一个样本函数也可以规定它的按时间平均的相关函数,这种按时间平均的相关函数与用数学期望规定的随机信号的相关函数是不相同的。但如果随机信号是平稳遍历的,则以概率平均(即数学期望)规定的相关函数与用时间平均规定的相关函数是几乎处处相等的。这时,可以由随机信号的样本值以时间平均的相关函数来计算随机信号在概率平均意义下的相关函数,即

严正声明:本文由历史百科网注册或游客用户付昱岚自行上传发布关于» 相关函数的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:付昱岚;本文链接:https://www.freedefine.cn/wenzhan/41226.html

赞 ()
我是一个广告位
留言与评论(共有 0 条评论)
   
验证码: