[拼音]:jieshi jiegou moxing
[外文]:interpretive structural model
应用图的矩阵表示方法(见图论)和简单的逻辑运算,对复杂系统的各个组成元素(或子系统)间的结构关系加以描述的一种模型。英文缩写为I 。I 通过对表示有向图的相邻矩阵的逻辑运算,得到可达性矩阵,然后分解可达性矩阵,最终使复杂系统分解成层次清晰的多级递阶形式。解释结构模型在制订企业计划、城市规划等领域已广泛使用,尤其对于建立多目标、元素之间关系错综复杂的社会系统及其分析,效果更为显著。
用顶点Vi和Vj表示系统的元素(i=1,2,3…;j=1,2,3…。),带箭头的边[Vi Vj]表示两元素之间的关系,即可构成有向图(图1),用来表示有向图中各元素间连接状态的矩阵称作相邻矩阵A。当从Vi到Vj有带箭头的边连接时,矩阵元素aij取值为1;无连接时取值为零。可达性矩阵M是用矩阵形式反映有向图各顶点之间通过一定路径可以到达的程度,它通过以下计算求得:将相邻矩阵A加上单位矩阵I(矩阵中除主对角线上元素为1外,其余元素皆为零的矩阵),然后用布尔代数规则 (0+0=0,0+1=1,1+1=1;0×0=0,0×1=0,1×1=1)进行乘方运算,直到两个相邻幂次方的矩阵相等为止。相等的矩阵中幂次较低的矩阵即为可达性矩阵。图1所示有向图的可达性矩阵M如下:通过对可达性矩阵的分解(有区域分解和级间分解),即可建立系统的多级递阶结构模型(图2)。多级递阶结构模型非常直观清楚地反映了该系统元素之间的结构关系。I 方法使用方便,不需要高深的数学理论,易为系统分析人员所掌握。
参考书目汪应洛主编:《系统工程导论》,机械工业出版社,北京,1982。严正声明:本文由历史百科网注册或游客用户辰阳自行上传发布关于» 解释结构模型的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:辰阳;本文链接:https://www.freedefine.cn/wenzhan/34621.html