历史百科网

分枝限界法

[拼音]:fenzhi xianjiefa

[外文]:branch and bound method

一种求解离散优化问题的计算分析方法,又称分枝定界法。它是由R.J.达金和兰德-多伊格在20世纪60年代初提出的。这种方法通常仅需计算和分析部分允许解,即可求得优解。因此在求解分派问题和整数规划问题时常用此法。

基本方法

求解一个约束条件较多的问题A,可以暂缓考虑部分条件,变换成问题B,先求B的优解。B的优解一定比 A的好(或相当)。再将原来暂缓考虑的部分条件逐步插入问题B中,得到B的若干子问题,称为分枝。求解这些子问题,淘汰较差的解,直到所有暂缓考虑的部分条件全部插入为止。这时求得的优解就是问题A的优解。

分派问题

设生产任务Ⅰ、Ⅱ、Ⅲ和Ⅳ,皆可在4台不同设备A、B、C和D上去完成。由于设备性能和技术要求等不同,在不同设备上完成各项任务所需的费用(或时间)均不相同,下表列出某一具体问题的任务、设备和费用的数量关系。规定每台设备只能安排一项生产任务。要求分派这4项生产任务,使总费用为最少。

首先分析在所有分派方案中,以何种分派方案的费用为较低。由表可知,当分派方案是(I-D)(即任务I交由D设备去完成时,下同),(Ⅱ-A),(Ⅲ-C),(Ⅳ-D)时,即得总费用

为小。它称为下界。但这样的分派方案要由 D设备去完成Ⅰ、Ⅳ两项任务,不符合题意要求。所以称这个解为非允许解。为此必须加以改进。接着,规定任务Ⅰ交由A去完成,其他任务则选择费用小的设备去完成,则由表可知,其总费用为

该方案恰好满足一台设备完成一项任务的规定,因此总费用193的解称为允许解。依次计算(I-B),(I-C),(I-D)各分派方案的解,如图1所示。分析1~4的分派方案后可知,要求的优解一定在164和148之间,即上界是164,下界是148。这时,只要在方案4这个分枝上继续进行组合即可。用同样计算方法得图2所示的分派方案。由分派方案5~7可知,方案5的总费用为156,但是非允许解,方案6的总费用是157,是允许解。所以方案6是优解。其具体分派组合是:(I-D),(Ⅱ-B),(Ⅲ-C),(Ⅳ-A)。上述计算过程可归纳如图3所示。

参考书目李德等编:《运筹学》,清华大学出版社,北京,1982。

严正声明:本文由历史百科网注册或游客用户泽雨自行上传发布关于» 分枝限界法的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:泽雨;本文链接:https://www.freedefine.cn/wenzhan/33693.html

赞 ()
我是一个广告位
留言与评论(共有 0 条评论)
   
验证码: