[拼音]:Pulangke gongshi
[外文]:Planck's formula
德国物理学家M.普朗克在量子论基础上建立的关于黑体辐射的正确公式。19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。
1900年普朗克获得一个和实验结果一致的纯粹经验公式,1901年他提出了能量量子化假设:辐射中心是带电的线性谐振子,它能够同周围的电磁场交换能量,谐振子的能量不连续,是一个量子能量的整数倍:
式中v是振子的振动频率,h是普朗克常数,它是量子论中最基本的常数。根据这个假设,可以导出普朗克公式:
它给出辐射场能量密度w(v,T)按频率的分布,式中T是热力学温度,k是玻耳兹曼常数。如图表示辐射场能量密度随波长变化的曲线,它同实验结果完全一致。
作为黑体的空腔内的辐射场,既可以分解为一系列单色平面波的叠加,又可看作是由光子组成的"气体"。光子的能量ε、动量p、波长λ和频率v之间遵从德布罗意关系ε=hv,则有ε=сp,在p到p+dp的动量间隔内,光子的量子态数目为,其中V是空腔的体积。只有腔壁不断发射和吸收光子才能在辐射场中建立起热平衡,所以光子"气体"中的光子数就不恒定,这意味着光子"气体"的化学势为零。而且,光子彼此间没有相互作用,光子"气体"是遵从玻色分布的理想气体。于是,每个量子态上的平均光子数应为这样容易得到普朗克公式。
普朗克公式在高频范围hvkT的极限条件下,过渡到维恩公式此式表明,w(v,T)随着v的增加很快地趋近于零,也就是说在热平衡状态下,几乎不存在高频光子,这是因为高频光子的能量远大于kT,而腔壁发射这样高能量的光子的几率是极小的。普朗克公式在低频hv< 普朗克通过对黑体辐射的深刻研究而建立起来的公式是物理学的一个重大突破,他首次提出的量子论,开创了理论物理学发展的新纪元。 严正声明:本文由历史百科网注册或游客用户振海自行上传发布关于» 普朗克公式的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:振海;本文链接:https://www.freedefine.cn/wenzhan/137055.html