[拼音]:bohanshu
[外文]:wave function
量子力学中描写微观系统状态的函数。在经典力学中,用质点的位置和动量(或速度)来描写宏观质点的状态,这是质点状态的经典描述方式,它突出了质点的粒子性。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值(见测不准关系),因而质点状态的经典描述方式不适用于对微观粒子状态的描述。
波函数ψ(r,t)是坐标和时间t的复函数。ψ(r,t)的绝对值二次方乘上r 处的体积元dτ与粒子在这个体积元中出现的几率p(r,t)成比例
p(r,t)=с|ψ(r),t)|2dτ,
с是比例常数。
一个微观系统的波函数,满足薛定谔方程。处于具体条件下的微观系统的波函数,可由相应的薛定谔方程解出。例如描写具有确定动量p和能量E的自由粒子状态的波函数是
由|Ф(r,t)|2=|A|2=常量说明自由粒子在空间各点出现的几率相同。
把波函数的绝对值二次方解释为与粒子在单位体积内出现的几率成比例是M.玻恩在E.薛定谔建立波动力学后提出的,被称为是波函数的统计诠释。波函数所表示的波也常被称为几率波。
由于粒子肯定存在于空间中,因此,将波函数对整个空间积分,就得出粒子在空间各点出现几率之和,结果应等于1:
可以用代替ψ(rr,t)作为波函数, 那么波函数就满足条件
这个条件称为波函数的归一化条件,满足这个条件的波函数ψ┡(r,t)称为归一化波函数。
严正声明:本文由历史百科网注册或游客用户智刚自行上传发布关于» 波函数的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:智刚;本文链接:https://www.freedefine.cn/wenzhan/136778.html