历史百科网

射影测度

[拼音]:sheying cedu

[外文]:projective measurement

1853年E.N.拉盖尔将角度的度量概念与交比的射影性质联系起来,是利用射影几何学的观点解释角度的一个重要尝试。1859年A.凯莱将拉盖尔思想进一步发挥,得到角的射影测度的概念。首先,将拉盖尔公式中的一对圆点,看作是变态(退化)的二级曲线,并以常态(非退化)二级曲线来代替。于是作了如下的推广:在射影平面内,先选定一个常态二级曲线及一个任意常数 k(k≠0),再过任意给定的两条直线α与b的交点,作二级曲线的两条切线t1与t2,并规定了一个函数(α,b;t1,t2),显然这个函数对任意给定的两直线α,b,其交点α×b及过交点的两条切线t1,t2都是确定的,从而kln(α,b;t1,t2)除了一个符号外,也被确定。而且函数φ(α,b)满足以下条件:,这里α、b、с 是共点的三条直线。 而这些条件正是欧氏几何中二条直线所成角度应当满足的,因此将 叫做两直线α,b所成角的射影测度,预先取定的二级曲线叫做这个测度的绝对形,而k叫做测度系数。

有了角的射影测度,可对偶地建立另一种形式的测度:取定一条常态二阶曲线及一个非零的任意常数k,连结任意给定的两点A,B,设直线A×B与二阶曲线交于两点T1及T2,且规定函数d(A,B)=kln(A,B;T1;T2),显然它是A,B的函数,且满足欧氏几何中两点间有向距离的条件:d(A,A)=0,d(B,A)=-d(A,B),d(A,B)+d(B,C)=d(A,C),这里A,B,C是共线的三点。因此将函数d(A,B)=kln(A,B;T1,T2),叫做A,B两点间的有向距离,因为它是利用射影概念交比定义的,所以又叫做距离的射影测度。预先给定的二阶曲线叫做测度的绝对形,k叫做测度系数。若已知常态二阶曲线的方程是

二已知点A,B的坐标分别是(α1,α2,α3),b1,b2,b3,A、B联线上任意一点的坐标可写作将其代入二阶曲线方程中,得到关于λ的一个二次方程,它的两个根分别以λ1及λ2表示,则T 1及T 2的坐标为,再利用交比的性质:

可得到d(A,B)的解析表达式。关于φ(α,b的解析表达式可利用完全相同的方法得出。上面以二次曲线(二阶与二级)为绝对形,规定了射影测度的概念。应该指出,确定距离的射影测度的绝对形即常态二阶曲线,其切线的 构成了用以确定角的射影测度的绝对形即常态二级曲线。由于二次曲线有实虚之分,取实虚不同的二次曲线作绝对形,这样就构成了与欧氏几何完全不同的非欧几何(罗氏几何和黎曼几何)的模型(见非欧几里得几何学)。1871年F.克莱因首先发明使用射影测度来说明非欧几何。简单来说,他在复射影平面上的实绝对形内部,规定了一些具体概念,定义射影测度后,作成了一个罗氏几何的射影模型即克莱因模型,在这个模型里,罗氏几何的全部公理都能够得到解释,因而罗氏几何的全部概念和定理都能在模型中体现出来。

参考书目

孙泽瀛编:《近世几何学》,高等教育出版社,北京,1959。

严正声明:本文由历史百科网注册或游客用户彭湃自行上传发布关于» 射影测度的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:彭湃;本文链接:https://www.freedefine.cn/wenzhan/130399.html

赞 ()
我是一个广告位
留言与评论(共有 0 条评论)
   
验证码: