[拼音]:wosi
[外文]:vortex filament
强度取有限值的涡管元(见涡旋),又称线涡。在工程实际中,涡旋大多分布在一定的体积内。设强度分布函数为Ω(x,y,z,t),则体积元dτ内的涡旋强度为Ωdτ。但有时涡旋也可能集中在很细的一根涡管上,其管径远小于问题的特征尺度。此时可近似地将此涡管看成是几何上的一条线,故称为涡丝。 设涡丝的强度为Γ,当涡丝的截面积σ趋于零时,涡量的大小Ω必须趋于无穷大并使涡通量σΩ保持为有限值Γ。考虑面积为σ,长为dl的体积dτ,则下式成立:
Ωdτ=Ωσdl=Γdl
(1)式中dl是线段元矢量,大小为dl,方向与涡旋矢量重合。给定体积τ内的涡旋场,则它所诱导的速度场由下式确定:
(2)式中。将式(1)代入便得一段涡丝元所诱导的速度:
(3)式(3)称为毕奥-萨伐尔公式。它指出,曲线涡丝段dl所诱导的速度dv,其方向垂直于dl和r,大小则与距离r的平方成反比,而且同dl和dl与r的夹角的正弦成正比。
从式(3)可导出下述重要结果:
(1)无限长直线涡丝 此时,这里取z轴与直线涡丝相重合的柱坐标系(r,嗞,z),嗞0是嗞方向的单位矢量。可见,速度在z方向的分量等于零,且平行z轴的直线上各点的速度完全相同。因此直线涡 导的是流体的平面运动。此时只需要考虑一个垂直于z轴的平面即可。涡丝在此平面上表现为一个点涡。因此,直线涡丝产生的速度场也可看成平面上的点涡所感应的速度场。直线涡丝没有自感,所以涡丝本身静止不动。
(2)圆形涡丝 取柱坐标,涡丝所在平面为(r,嗞)平面,z轴通过圆心O。此时v=墷×A,其中Ar=0,Az=0,
式中a是圆形涡丝的半径;;K(k)和E(k)是以k为模数的第一类和第二类完全椭圆积分。常曲率的圆形涡丝在自身诱导下沿着z轴方向以常速运动。在运动过程中涡丝不断变形。理论揭示涡丝的运动速度为无限大。实际问题中,涡管总是有限粗的,所以自感引起的涡管运动速度也是有限的。
(2)一般的曲线涡丝 由于自身诱导作用,变曲率曲线涡丝将在流体中运动,并在运动过程中不断改变自己的形状。
严正声明:本文由历史百科网注册或游客用户振荣自行上传发布关于» 涡丝的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:振荣;本文链接:https://www.freedefine.cn/wenzhan/128860.html