历史百科网

马克劳林椭球体

[拼音]:makelaolin tuoqiuti

[外文]:Maclaurin ellipsoid

均匀流体球自转时的一种平衡形状。1742年马克劳林第一次严格证明:旋转椭球体可以是均匀流体自转时的平衡形状。后来很多数学家改进了这项工作,成为天体形状理论中第一个经典结论。若σ 为流体密度、ω为它的自转速率、G 为万有引力常数,则当参数

时,平衡形状可以是旋转椭球体。此旋转椭球体称为马克劳林椭球体。若a为椭球体的赤道半径,c为极半径(在自转轴上),则必须是a>c。这说明马克劳林椭球体一定是扁球体,不可能是长球体。当Ω<Ω0时,每一Ω值都对应一个马克劳林椭球体。Ω值越大,相应的椭球体越扁。在极限情况Ω=Ω0时,相应的a=2.7c。李亚普诺夫证明,当Ω<Ω1=0.18711…时,相应的马克劳林椭球体是稳定的;而当Ω1<Ω<Ω0时,相应的马克劳林椭球体是不稳定的。

严正声明:本文由历史百科网注册或游客用户智刚自行上传发布关于» 马克劳林椭球体的内容,本站只提供存储,展示,不对用户发布信息内容的原创度和真实性等负责。请读者自行斟酌。同时如内容侵犯您的版权或其他权益,请留言并加以说明。站长审查之后若情况属实会及时为您删除。同时遵循 CC 4.0 BY-SA 版权协议,尊重和保护作者的劳动成果,转载请标明出处链接和本声明内容:作者:智刚;本文链接:https://www.freedefine.cn/wenzhan/128501.html

赞 ()
我是一个广告位
留言与评论(共有 0 条评论)
   
验证码: